Packet Tracer – Examining a Redundant Design Topology Objectives Part 1: Check for STP Convergence Part 2: Examine the ARP Process Part 3: Test Redundancy in a Switched Network Background In this activity, you will observe how STP operates, by default, and how it reacts when faults occur. Switches have been added to the network “out of the box”. Cisco switches can be connected to a. Packet Tracer Lab Answers & Solutions: 6.1.2.1 Packet Tracer – Add Computers to an Existing Network Answers: 6.1.3.9 Packet Tracer – Connect to a Wireless Network Answers: 6.1.4.7 Packet Tracer – Configure Firewall Settings Answers: 6.1.5.3 Packet Tracer – Control IoT Devices Answers: 11.5.5.3 Packet Tracer – Use Telnet and SSH Answers.
- 1.5.3.6 Packet Tracer - Communicating In A Cyber World. On average this form takes 4 minutes to complete. The 1.5.3.6 Packet Tracer - Communicating In A Cyber World form is 4 pages long and contains: 0 signatures; 0 check-boxes; 17 other fields.
- 2.3.1.5 Packet Tracer Konfigurasi PVST+ S1ena S1#conf t Enter configuration commands, one per line. End with CNTL/Z. S1(config)#hos S1(config)#hostname S1 S1(config)#int f0/6 S1(config-if)#switchport mode access S1(config-if)#no shutdown. S1(config-if)#vlan 10 S1(config-vlan)#vlan 20.
- Packet Tracer is a very popular network simulator tool for certification exam preparation, particularly for CCENT and CCNA Routing and Switching students. The volume of inquiries for Packet Tracer on the Cisco Learning Network forums is astounding, and we appreciate this high level of interest.
CCNP Enterprise
As of February 24, 2020, CCNP Enterprise is the replacement professional-level certification for Cisco CCNP Routing & Switching and Cisco CCDP. CCNP Enterprise validates core networking knowledge needed at the professional-level and includes automation and programmability to match with required network engineer skills in the enterprise for networking infrastructure scaling.
Contrary to the CCNP R&S, there are no longer formal prerequisites for CCNP Enterprise : a valid CCNA certification is no longer required before beeing able to take CCNP Enterprise exams.
GNS3 emulator is strongly recommended for CCNP Enterprise certification exam preparation as Cisco Packet Tracer 7.3.1 does not include all the layer 2 and layer 3 features os the CCNP curricula
Cisco CCNP 350-401 ENCOR exam topics
Architecture
1.1 Explain the different design principles used in an enterprise network
1.1.a Enterprise network design such as Tier 2, Tier 3, and Fabric Capacity planning
1.1.b High availability techniques such as redundancy, FHRP, and SSO
1.2 Analyze design principles of a WLAN deployment
1.2.a Wireless deployment models (centralized, distributed, controller-less, controller based, cloud, remote branch)
1.2.b Location services in a WLAN design
1.3 Differentiate between on-premises and cloud infrastructure deployments
1.4 Explain the working principles of the Cisco SD-WAN solution
1.4.a SD-WAN control and data planes elements
1.4.b Traditional WAN and SD-WAN solutions
1.5 Explain the working principles of the Cisco SD-Access solution
1.5.a SD-Access control and data planes elements
1.5.b Traditional campus interoperating with SD-Access
1.6 Describe concepts of wired and wireless QoS
1.6.a QoS components
1.6.b QoS policy
1.7 Differentiate hardware and software switching mechanisms
1.7.a Process and CEF
1.7.b MAC address table and TCAM
1.7.c FIB vs. RIB
Virtualization
2.1 Describe device virtualization technologies
2.1.a Hypervisor type 1 and 2
2.1.b Virtual machine
2.1.c Virtual switching
2.2 Configure and verify data path virtualization technologies
2.2.a VRF
2.2.b GRE and IPsec tunneling
2.3 Describe network virtualization concepts
2.3.a LISP
2.3.b VXLAN
Infrastructure
3.1 Layer 2
3.1.a Troubleshoot static and dynamic 802.1q trunking protocols
3.1.b Troubleshoot static and dynamic EtherChannels
3.1.c Configure and verify common Spanning Tree Protocols (RSTP and MST)
3.2 Layer 3
3.2.a Compare routing concepts of EIGRP and OSPF (advanced distance vector vs. linked state, load balancing, path selection, path operations, metrics)
3.2.b Configure and verify simple OSPF environments, including multiple normal areas, summarization, and filtering (neighbor adjacency, point-to-point and broadcast network types, and passive interface)
3.2.c Configure and verify eBGP between directly connected neighbors (best path selection algorithm and neighbor relationships)
3.3 Wireless
3.3.a Describe Layer 1 concepts, such as RF power, RSSI, SNR, interference noise, band and channels, and wireless client devices capabilities
3.3.b Describe AP modes and antenna types
3.3.c Describe access point discovery and join process (discovery algorithms, WLC selection process)
3.3.d Describe the main principles and use cases for Layer 2 and Layer 3 roaming
3.3.e Troubleshoot WLAN configuration and wireless client connectivity issues
3.4 IP Services
3.4.a Describe Network Time Protocol (NTP)
3.4.b Configure and verify NAT/PAT
3.4.c Configure first hop redundancy protocols, such as HSRP and VRRP
3.4.d Describe multicast protocols, such as PIM and IGMP v2/v3
Network assurance and troubleshooting
4.1 Diagnose network problems using tools such as debugs, conditional debugs, trace route, ping, SNMP, and syslog
4.2 Configure and verify device monitoring using syslog for remote logging
4.3 Configure and verify NetFlow and Flexible NetFlow
4.4 Configure and verify SPAN/RSPAN/ERSPAN
4.5 Configure and verify IPSLA
4.6 Describe Cisco DNA Center workflows to apply network configuration, monitoring, and management
4.7 Configure and verify NETCONF and RESTCONF
Network security
5.1 Configure and verify device access control
5.1.a Lines and password protection
5.1.b Authentication and authorization using AAA
5.2 Configure and verify infrastructure security features
5.2.a ACLs
5.2.b CoPP
5.3 Describe REST API security
5.4 Configure and verify wireless security features
5.4.a EAP
5.4.b WebAuth
5.4.c PSK
5.5 Describe the components of network security design
5.5.a Threat defense
5.5.b Endpoint security
5.5.c Next-generation firewall
5.5.d TrustSec, MACsec
5.5.e Network access control with 802.1X, MAB, and WebAuth
Network automation
6.1 Interpret basic Python components and scripts
6.2 Construct valid JSON encoded file
6.3 Describe the high-level principles and benefits of a data modeling language, such as YANG
6.4 Describe APIs for Cisco DNA Center and vManage
6.5 Interpret REST API response codes and results in payload using Cisco DNA Center and RESTCONF
Packet Tracer 3.1.1.5
6.6 Construct EEM applet to automate configuration, troubleshooting, or data collection
Packet Tracer 1.2.4.5 Answers
6.7 Compare agent vs. agentless orchestration tools, such as Chef, Puppet, Ansible, and SaltStack